Atomically Abrupt Topological p-n Junction.

نویسندگان

  • Sung Hwan Kim
  • Kyung-Hwan Jin
  • Byung Woo Kho
  • Byeong-Gyu Park
  • Feng Liu
  • Jun Sung Kim
  • Han Woong Yeom
چکیده

Topological insulators (TI's) are a new class of quantum matter with extraordinary surface electronic states, which bear great potential for spintronics and error-tolerant quantum computing. In order to put a TI into any practical use, these materials need to be fabricated into devices whose basic units are often p-n junctions. Interesting electronic properties of a 'topological' p-n junction were proposed theoretically such as the junction electronic state and the spin rectification. However, the fabrication of a lateral topological p-n junction has been challenging because of materials, process, and fundamental reasons. Here, we demonstrate an innovative approach to realize a p-n junction of topological surface states (TSS's) of a three-dimensional (3D) topological insulator (TI) with an atomically abrupt interface. When a ultrathin Sb film is grown on a 3D TI of Bi2Se3 with a typical n-type TSS, the surface develops a strongly p-type TSS through the substantial hybridization between the 2D Sb film and the Bi2Se3 surface. Thus, the Bi2Se3 surface covered partially with Sb films bifurcates into areas of n- and p-type TSS's as separated by atomic step edges with a lateral electronic junction of as short as 2 nm. This approach opens a different avenue toward various electronic and spintronic devices based on well-defined topological p-n junctions with the scalability down to atomic dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomically thin p-n junctions with van der Waals heterointerfaces.

Semiconductor p-n junctions are essential building blocks for electronic and optoelectronic devices. In conventional p-n junctions, regions depleted of free charge carriers form on either side of the junction, generating built-in potentials associated with uncompensated dopant atoms. Carrier transport across the junction occurs by diffusion and drift processes influenced by the spatial extent o...

متن کامل

Self-Driven Photodetector and Ambipolar Transistor in Atomically Thin GaTe-MoS2 p-n vdW Heterostructure.

Heterostructure engineering of atomically thin two-dimensional materials offers an exciting opportunity to fabricate atomically sharp interfaces for highly tunable electronic and optoelectronic devices. Here, we demonstrate abrupt interface between two completely dissimilar material systems, i.e, GaTe-MoS2 p-n heterojunction transistors, where the resulting device possesses unique electronic pr...

متن کامل

Germanium In Situ Doped Epitaxial Growth on Si for High-Performance n/p-Junction Diode

We demonstrate an abrupt and box-shaped n/p junction in Ge with a high level of activation of n-type-dopant phosphorus (P) using in situ doping during epitaxial growth. The temperature dependence of dopant activation was investigated associated with the shallower and abrupt junction formation. In addition, we have fabricated high-performance Ge n/p-junction diodes at 400 ◦C–600 ◦C, based on the...

متن کامل

Broadband Photovoltaic Detectors Based on an Atomically Thin Heterostructure.

van der Waals junctions of two-dimensional materials with an atomically sharp interface open up unprecedented opportunities to design and study functional heterostructures. Semiconducting transition metal dichalcogenides have shown tremendous potential for future applications due to their unique electronic properties and strong light-matter interaction. However, many important optoelectronic ap...

متن کامل

Fabrication and characterization of axially doped silicon nanowire tunnel field-effect transistors.

Tunnel field-effect transistors were fabricated from axially doped silicon nanowire p-n junctions grown via the vapor-liquid-solid method. Following dry thermal oxidation to form a gate dielectric shell, the nanowires have a p-n-n(+) doping profile with an abrupt n-n(+) junction, which was revealed by scanning capacitance microscopy. The lightly doped n-segment can be inverted to p(+) by modula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 11 10  شماره 

صفحات  -

تاریخ انتشار 2017